SYNTHESIS AND MOLECULAR STRUCTURE OF NIOBOCENE TRIMETHYLACETATE AND ITS π-COMPLEX WITH DIPHENYLACETYLENE

A.A. PASYNSKII *, Yu.V. SKRIPKIN, I.L. EREMENKO, V.T. KALINNIKOV, Institute of General and Inorganic Chemistry of the U.S.S.R. Academy of Sciences, Moscow (U.S.S.R.)
G.G. ALEKSANDROV and Yu.T. STRUCHKOV
Institute of Organo-Element Compounds of the U.S.S.R. Academy of Sciences, Moscow (U.S.S.R.)

(Received June 28th, 1978)

Summary

Niobocene trimethylacetate $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{OOCCMe}_{3}\right)$ (I) does not react with usual n-donors (pyridine and triphenylphosphine), but readily adds a π-acceptor molecule of diphenylacetylene (tolane) in benzene to form $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{OOCCMe}_{3}\right)(\pi$ $\mathrm{Ph}_{2} \mathrm{C}_{2}$) $\cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ (II). The structures of the diamagnetic complexes I and II have been determined by an X-ray diffraction study. These molecules represent wedge-like sandwiches with dihedral angles between cyclopentadienyl ligands equal to 44.4 and 50.7°, and average $\mathrm{Nb}-\mathrm{C}$ distances of 2.39 and $2.44 \AA$, respectively. The bisector plane of I contains the chelate trimethylacetate group ($\mathrm{Nb}-\mathrm{O}$ bond lengths 2.23 and $2.24 \AA$) and that of II contains the coordinated tolane molecule and the oxygen atom of the terminal trimethylacetate ligand ($\mathrm{Nb}-\mathrm{O} 2.16, \mathrm{Nb}-\mathrm{C} 2.18$ and $2.19, \mathrm{C}-\mathrm{C} 1.29 \AA, \mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}$ angles 141 and 146°). An unusually large splitting of OCO stretching frequencies is observed in the IR spectrum of I ($1652-1305=347 \mathrm{~cm}^{-1}$). Structural characteristics of the coordinated $\mathrm{C} \equiv \mathrm{C}$ triple bond in II are similar to those found in $\mathrm{Cp}\left(\pi-\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \mathrm{Nb}$ (CO) $\left(\pi-\mathrm{Ph}_{2} \mathrm{C}_{2}\right)$ studied earlier. The role played by the $\mathrm{Nb}^{\mathrm{III}}$ lone pair in I and II is discussed.

Introduction

> We have recently reported [1] the isolation of monomeric niobocene trimethylacetate (I) via reaction 1.

$\mathrm{Cp}_{2} \mathrm{NbBH}_{4}+\mathrm{Me}_{3} \mathrm{CCOOH} \rightarrow \mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{OOCCMe}_{3}\right)+1 / 2 \mathrm{~B}_{2} \mathrm{H}_{6}+\mathrm{H}_{2}$
The IR spectrum of I indicates terminal rather than chelate coordination of
the carboxylate group (the difference of asymmetric and symmetric OCO stretching frequencies is $1652-1305=347 \mathrm{~cm}^{-1}$ [1]). This feature appeared to be unusual since carboxylate groups act as chelate ligands in similar titanium complexes $\mathrm{Cp}_{2} \mathrm{TiOOCR}$ [2] including the case where $\mathrm{R}=\mathrm{CMe}_{3}$ ($\Delta \nu(\mathrm{OCO})=$ $1540-1430=110 \mathrm{~cm}^{-1}$) [3]. Therefore it seemed of interest to study the reactivity of I towards typical n - and π-donors.

Results

$\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{OOCCMe}_{3}\right.$) (I) is shown to be unaltered after refluxing in benzene in the presence of pyridine or triphenylphosphine. However, I readily adds one diphenylacetylene (tolane) molecule under the same conditions (Scheme 1).

SCHEME 1
$\stackrel{\mathrm{Py} \text { or } \mathrm{PPh}_{3}}{\leftarrow--\mathrm{Cp}_{2} \mathrm{NbOOCCMe}}{ }_{3} \xrightarrow{\mathrm{Ph}_{2} \mathrm{C}_{2}} \mathrm{Cp}_{2} \mathrm{NbOOCCMe} 3 \cdot \mathrm{Ph}_{2} \mathrm{C}_{2}$
(I)
(II)

The tolane π-complex of niobocene trimethylacetate (II) is formed as yellowgreen elongated prisms, m.p. 196-197 ${ }^{\circ}$ C. This complex decomposes slowly in air in the solid state but undergoes rapid oxidation in solution. The compound is soluble in benzene, THF, CHCl_{3} and insoluble in heptane. The IR spectrum shows the OOCCMe $_{3}$ group to be terminal ($\nu_{\mathrm{s}}(\mathrm{OCO})=1330 \mathrm{~cm}^{-1}, \nu(\mathrm{OCO})=$ $1618 \mathrm{~cm}^{-1}, \Delta \nu=288 \mathrm{~cm}^{-1}$) [4], although the value is smaller than as for the initial I. The tolane $C=C$ triple bond gives rise to the IR band at $1800 \mathrm{~cm}^{-1}$ which is typical for two electron donor non-bridging π-coordination of alkynes in wedge-like sandwiches, e.g. $1775 \mathrm{~cm}^{-1}$ in $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{TaH}\left(\pi-\mathrm{Pr}_{2} \mathrm{C}_{2}\right)$ [5], 1780 cm^{-1} in $\mathrm{Cp}\left(\pi-\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \mathrm{Nb}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)$ [6], $1750-1825 \mathrm{~cm}^{-1}$ in paramagnetic complexes $\mathrm{Cp}_{2} \mathrm{~V}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)$ [7]. The mass spectrum of II has no peak of the mole-

Fig. 1. The molecular structure of II with main bond lengths and angles.
ATOMIC COORDINATES (X104) AND TEMPERATURE FACTOR PARAMETERS ${ }^{a}$ IN STRUCTURE II

[^0]TABLE 2
BOND LENGTHS $d(\AA)$ AND BOND ANGLES $\omega\left({ }^{\circ}\right)$ IN S'TRUCTURE II

Bond	d	Bond	d	Angle	ω	Angle	ω
$\mathrm{NJ}-\mathrm{O}(1)$	2.16(1)	$\mathrm{C}(9)-\mathrm{C}(10)$	1,38(2)	$\mathrm{O}(1) \mathrm{NJ} \mathrm{Cp}(1)^{a}$	106.2(1)	$\mathrm{C}(11) \mathrm{C}(12) \mathrm{C}(13)$	118.7(9)
$\mathrm{Nb}-\mathrm{C}(6)$	2,18(1)	C(10)-C(11)	1.41(1)	0 (1) $\mathrm{NuCp}(2)$	103.8(1)	C(12)C(13) C (8)	121.6 (8)
$\mathrm{N},-\mathrm{C}(7)$	2,19(1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.38(1)	$0(1) \mathrm{NbC}(\mathrm{ac})^{6}$	93.9(1)	$\mathrm{C}(13) \mathrm{C}(8) \mathrm{C}(9)$	118.5(8)
$\mathrm{NJ},-\mathrm{C}(20)$	2.44(1)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.42(1)	$\mathrm{Cp}(1) \mathrm{Nb} \mathrm{Cp}_{(2)}$	129.8(0)	$\mathrm{C}(13) \mathrm{C}(8) \mathrm{C}(7)$	122.1(7)
$\mathrm{N},-\mathrm{C}(21)$	2.42(1)	$\mathrm{C}(13)-\mathrm{C}(8)$	1.38(1)	$\mathrm{Cp}(1) \mathrm{NbC}(\mathrm{ac})$	107.9(0)	$\mathrm{C}(6) \mathrm{C}(14) \mathrm{C}(15)$	119.3(8)
$\mathrm{Nb}-\mathrm{C}(22)$	2.42(1)	C(14)-C(15)	1.40(1)	$\mathrm{Cp}(2) \mathrm{NbC}$ (ac)	110.0(0)	C(14)C(15)C(16)	120.5(9)
$\mathrm{N},-\mathrm{C}(23)$	2.42(1)	C(16) - $\mathrm{C}(16)$	1.39(1)	$\mathrm{NbO}(1) \mathrm{C}(1)$	132.1(1)	$\mathrm{C}(16) \mathrm{C}(16) \mathrm{C}(17)$	120.2(11)
$\mathrm{Nb}-\mathrm{C}(24)$	2.45(1)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.35(2)	O(1)C(1)O(2)	122.6(8)	$\mathrm{C}(16) \mathrm{C}(17) \mathrm{C}(18)$	120.6(12)
$\mathrm{Nb}-\mathrm{C}(25)$	2.44(1)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.37(2)	$\mathrm{O}(1) \mathrm{C}(1) \mathrm{C}(2)$	115.7(7)	C(17) $\mathrm{C}(18) \mathrm{C}(19)$	120.9(12)
$\mathrm{Nb}-\mathrm{C}(26)$	2.44(1)	C(18)-C(19)	1.42(2)	O(2)C(1)C(2)	121.7(8)	C(18)C(19)C(14)	118.3(10)
$\mathrm{Nb}-\mathrm{C}(27)$	2.44(1)	C(19)-C(14)	1.38(1)	C(1)C(2)C(3)	108.8(7)	C(19)C(14) C (6)	121.1(8)
$\mathrm{Nb}-\mathrm{C}(28)$	2.42(1)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.41(2)	C(1)C(2)C(4)	107.1(7)	$\mathrm{C}(20) \mathrm{C}(21) \mathrm{C}(22)$	108.0(9)
$\mathrm{Nb}-\mathrm{C}(29)$	2.45(1)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.38(1)	$\mathrm{c}(1) \mathrm{C}(2) \mathrm{C}(5)$	108,6(7)	$\mathrm{C}(21) \mathrm{C}(22) \mathrm{C}(23)$	108.4(9)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.29(1)	$\mathrm{C}(22)-\mathrm{C}(23)$	1,40(2)	$\mathrm{C}(3) \mathrm{C}(2) \mathrm{C}(4)$	110.6(7)	C(22)C(23)C(24)	108.0(9)
$\mathrm{C}(1)-\mathrm{O}(2)$	1.23(1)	C(23)-C(24)	1.39(2)	$\mathrm{C}(3) \mathrm{C}(2) \mathrm{C}(5)$	110.1(7)	C(23)C(24)C(20)	108.0(9)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.53(1)	C(24)-C(20)	1,39(2)	C(4)C(2)C(5)	111.5(7)	C(24)C(20) C (21)	107.7(9)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.51(1)	C(25)-C(26)	1.37(2)	C(6)C(7) $\mathrm{C}(8)$	141.2(7)	C(25)C(26)C(27)	109.2(11)
$\mathrm{C}(2)-\mathrm{C}(4)$	1.63(1)	C(26)-C(27)	1.39(2)	$\mathrm{C}(7) \mathrm{C}(6) \mathrm{C}(14)$	146.4(8)	C(26)C(27) C (28)	107.3(11)
$\mathrm{C}(2)-\mathrm{C}(5)$	1.51(1)	C(27)-C(28)	1.37(2)	$\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(9)$	119.5(7)	C(27)C(28) C (29)	110.4(11)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.29(1)	C(28)-C(29)	1.46(2)	$\mathrm{C}(8) \mathrm{C}(9) \mathrm{C}(10)$	120.5(9)	$\mathrm{C}(28) \mathrm{C}(29) \mathrm{C}(25)$	103.1(11)
$\mathrm{C}(6)-\mathrm{C}(14)$	1.48(1)	$\mathrm{C}(29)-\mathrm{C}(2 \mathrm{E})$	1,42(2)	$\mathrm{C}(10) \mathrm{C}(11) \mathrm{C}(12)$	120.7(10)	C(29)C(25)C(26)	110.1(10)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.45(1)	$\mathrm{C}(30)-\mathrm{C}(31)$	1.38(1)	$\mathrm{C}(9) \mathrm{C}(10) \mathrm{C}(11)$	120.1(10)	$\mathrm{C}(30) \mathrm{C}(31) \mathrm{C}(32)$	120,0(9)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.41(1)	$\mathrm{C}(30)-\mathrm{C}(32)$	1.40(1)				

${ }^{a} \mathrm{Cp}$ centre of the cyclopentadienyl ring, ${ }^{b} \mathrm{C}(\mathrm{ac})$ entre of the triple bond $\mathrm{C}(6)-\mathrm{C}(7)$.
cular ion but contains the ions $\mathrm{Cp}_{2} \mathrm{NbOOCCMe}_{3}{ }^{+}$(m / e 324) and $\mathrm{Ph}_{2} \mathrm{C}_{2}$ ($m / e 178$) and products of their fragmentation, i.e. the main fragmentation path involves a cleavage of the niobium-tolane π-bond. The ${ }^{1} \mathrm{H}$ NMR spectrum of II ($\delta(\mathrm{ppm})$, in THF) contains sharp proton singlets due to CH_{3} (0.91) and $\mathrm{C}_{5} \mathrm{H}_{5}$ (6.03) and a multiplet due to $\mathrm{C}_{6} \mathrm{H}_{5}$ (7.5) with intensity ratio of $9 / 10 / 10$.

To determine the structures of I and II unequivocally we carried out their single crystal X-ray study. The results obtained for II (Fig. 1) were consistent with the structure proposed on the basis of the other physical methods. Atomic coordinates and temperature factors are given in Table 1, bond lengths and angles in 'l'able 2. I'he molecule II represents a wedge-like sand wich with the dihedral angle between two cyclopentadienyl ring planes equal to 50.7°. The carboxylate group is a terminal ligand, and the $\mathrm{Nb}, \mathrm{O}(1)$ and coordinated triple bond carbon atoms (the $C \equiv C$ bond length $1.29 \AA$) lie in the bisector plane. The dihedral angle between phenyl ring planes of the coordinated tolane molecule is 89.5°. The $\mathrm{Nb}-\mathrm{C}(6)$ and $\mathrm{Nb}-\mathrm{C}(7)$ distances are practically identical (2.18 and $2.19 \AA$, respectively). On the whole the molecule is not sterically strained, although the angles at the acetylenic carbon atoms are somewhat different $\left(C(8)-C(7)-C(6) 141^{\circ}, C(7)-C(6)-C(14) 146^{\circ}\right)$ probably due to short nonbonded distances $C(6) \cdots O(1) 2.62 \AA$, and $C(7) \cdots C(25) 2.85 \AA$ (there are no such short contacts between carbon atoms of phenyl rings and cyclopentadienyl ligands or t-butyl group). Crystals of II contain one benzene solvent molecule per two molecules of the complex.

TABLE 3
ATOMIC COORDINATES ($\times 10^{4}$) AND TEMPERATURE FACTORS IN STRUCTURE I

Atom	x	y	z	$B_{\text {iso }} \times 10\left(\mathrm{~A}^{2}\right)$
Nb	1998(1)	1245(1)	1/4	b
0 (1)	2364(7)	-975(8)	1/4	26(2)
O(2)	3833(7)	428(8)	1/4	27(2)
C(1)	3454(10)	-798(12)	1/4	25(2)
C(2)	4350(11)	-1952(13)	1/4	28(2)
C(3)	4969(19)	-2002(21)	1469(17)	27(4)
C(4)	3684(13)	-3321(15)	2717(13)	31(4)
C(5)	5229(19)	-1681(21)	3434(18)	29(5)
C(6)	585(12)	1245(18)	1143(11)	27(3)
C(7)	864(13)	2647(16)	1395(11)	24(3)
C(8)	2112(13)	2930(13)	1140(10)	28(2)
C(9)	2603(11)	1703(17)	697(10)	30(3)
C(10)	1670(12)	653(11)	693(9)	24(2)
C(11)	2223(26)	1099(32)	640(20)	7(4)
C(12)	925(36)	963(35)	955(28)	17(7)
C(13)	690(36)	1993(50)	1237(31)	29(8)
C(14)	1310(39)	2835(38)	1274(32)	28(8)
C(15)	2417(31)	2424(43)	902(28)	20(6)

[^1]| B_{11} | B_{22} | B_{33} | B_{12} | B_{13} | B_{23} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $22.4(4)$ | $25.1(4)$ | $24.2(4)$ | $1.2(5)$ | 0 | 0 |

TABLE 4
BOND LENGTHS d (A) AND BOND ANGLES ω (${ }^{c}$) IN STRUCTURE I^{a}

Bond	d	Angle	ω
$\mathrm{Nb}-\mathrm{O}(1)$	2.23(1)	CpNbCp ${ }^{\text {b }}$	136(1)
$\mathrm{Nb}-\mathrm{O}(2)$	2.24(1)	$\mathrm{O}(1) \mathrm{NbO}(2)$	58(1)
$\mathrm{Nb}-\mathrm{C}(1)$	2.61(1)	$\mathrm{NbO}(1) \mathrm{C}(1)$	93(1)
$\mathrm{Nb}-\mathrm{C}(6)$	2.36(1)	$\mathrm{NbO}(2) \mathrm{C}(1)$	91(1)
$\mathrm{Nb}-\mathrm{C}(7)$	2.35(2)	O(1)C(1)O(2)	118(1)
$\mathrm{Nb}-\mathrm{C}(8)$	2.39(1)	O(1)C(1)C(2)	124(1)
$\mathrm{Nb}-\mathrm{C}(9)$	2.43(1)	$0(2) \mathrm{C}(1) \mathrm{C}(2)$	118(1)
$\mathrm{Nb}-\mathrm{C}(10)$	2.40(1)	$\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3)$	110(1)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.25(1)	$\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(4)$	108(1)
O(2)-C(1)	1.28(1)	C(1)C(2)C(5)	107(1)
C(2)-C(1)	1.53(2)	$\mathrm{C}(3) \mathrm{C}(2) \mathrm{C}(4)$	111(1)
C(2)-C(3)	1.49(2)	$\mathrm{C}(3) \mathrm{C}(2) \mathrm{C}(5)$	112(1)
C(2)-C(4)	1.57(2)	$\mathrm{C}(4) \mathrm{C}(2) \mathrm{C}(5)$	109(1)
C(2)-C(5)	1.58(2)	$\mathrm{C}(7) \mathrm{C}(6) \mathrm{C}(10)$	106(1)
C(6)-C(7)	1.45(2)	$\mathbf{C (6) C (7) C (8) ~}$	110(1)
C(7)-C(8)	1.48(2)	$\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(9)$	107(1)
C(8)-C(9)	1.45(2)	$\mathrm{C}(8) \mathrm{C}(9) \mathrm{C}(10)$	108(1)
$C(9)-C(10)$	1.48(2)	$\mathrm{C}(6) \mathrm{C}(10) \mathrm{C}(9)$	109(1)
$\mathrm{C}(10)-\mathrm{C}(6)$	1.48(2)		

${ }^{a}$ For the $C p$ ligand, values given refer to the position $C(6) \cdots C(10)$ with the greater (~ 0.75) occupancy.
${ }^{b}$ Cp centre of the cyclopentadienyl ring.

Atomic coordinates and temperature factors in the crystal structure of I are given in Table 3, bond lengths and angles in Table 4. The molecule occupies a special position in the mirror plane and is statistically disordered ${ }^{*}$.

The results of the X-ray study were quite unexpected (Fig. 2). The molecule is also a wedge-like sandwich but contains a chelate carboxylate group, OOCCMe_{3}, rather than the terminal one as was supposed previously [I] on the basis of its IR spectrum. The dihedral angle between the average $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand planes is equal to 44.4°, the average $\mathrm{Nb}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ bond lengths are 2.39 and $1.47 \AA$, respectively, the cyclopentadienyl ligands being in an eclipsed conformation with respect to each other. The planar four-membered chelate cycle NbOCO is situated in the crystallographic mirror plane, the $\mathrm{Nb}-\mathrm{O}$ bond lengths of 2.23 and $2.24 \AA$ are greater than the $\mathrm{Nb}-\mathrm{O}$ distance to the terminal OOCCMe_{3} group in II ($2.16 \AA$). Although the $\mathrm{Nb}-\mathrm{C}(1)$ bond of $2.61 \AA$ is considerably longer than the longest $\mathrm{Nb}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distance of $2.45 \AA$, it is rather close to the $2.53 \AA$ length of the $\mathrm{Nb}-\mathrm{C}(\mu-\mathrm{CO})$ bond which doubtlessly exists in the binuclear complex $\mathrm{Cp}_{2} \mathrm{Nb}(\mu-\mathrm{CO})(\sigma, \pi-\mathrm{CO}) \mathrm{Mo}(\mathrm{CO}) \mathrm{Cp}$, studied by us recently [8].

[^2]

Fig. 2. The molecular structure of I with main geometrical parameters. Only one statistical position of Cp and t-butyl ligands is shown.

Discussion

The results of the present study reveal a close relationship between structures and reactivities of compounds I and II. In particular, the chelate type trimethylacetate group coordination in I results in a rare gas electronic configuration for the Nb atom, which explains the inertness of I towards strong n-donors. On the other hand, the presence of a lone pair on the Nb^{111} ion (d^{2}-configuration) makes possible a reaction of I with such ligands as tolane, having a strong π-acceptor ability.

A similar tendency of addition of only those ligands which are strong π acceptors was earlier observed for $\mathrm{Cp}_{2} \mathrm{~V}$ (coordination with $\mathrm{CO}, \mathrm{CS}_{2}$, dipyridyl, diethyl-maleate and -fumarate, inertness towards pyridine, phosphines and olefins containing no strong electron acceptor groups [9]) and for $\mathrm{Cp}_{2} \mathrm{VX}(\mathrm{X}=\mathrm{I}$, R , or SR) [10] and $\mathrm{Cp}_{2} \mathrm{NbCl}$ [11] which both readily add CO . This tendency was discussed recently [12,13].

The existence of the niobium-tolane π-interaction in II seemed to follow from the similarity of the geometrical and IR spectral parameters of a tolane molecule in II and in the wedge-like sand wich complex $\mathrm{Cp}\left(\pi-\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \mathrm{Nb}(\mathrm{CO})(\pi$ $\mathrm{Ph}_{2} \mathrm{C}_{2}$), studied by us earlier [14-16] (Table 5). In fact, we explained the decrease in the $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}$ angles from 180 to 140° on coordination of a tolane molecule to $\mathrm{Nb}[17,18]$ by an electron density shift to the triple bond antibonding orbitals, i.e. by a contribution from a dative $M \rightarrow R_{2} C_{2}$ bond, by analogy with calculations by Blizzard and Santry [19]. The decrease in angle is responsible for the lowering of the $\nu(C \equiv C)$ frequency to $1700-1800 \mathrm{~cm}^{-1}$ [20]. On the other hand, a decrease of electron density on the $\mathrm{C} \equiv \mathrm{C}$ bonding orbitals (i.e. a strengthening of $\mathrm{R}_{2} \mathrm{C}_{2} \rightarrow \mathrm{M}$ donor-acceptor interaction) would weakly affect the alkyne geometry, only slightly elongating the $C \equiv C$ bond [19] (from 1.26 to 1.29 \AA on going from Nb^{I} to $\mathrm{Nb}^{\text {III }}$ complex in the present case).

Low sensitivity of I to air oxidation in the solid state distinguishes it from $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{OOCCMe}_{3}\right)_{2}$ [1], and particularly $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OOCCMe}_{3}\right)$ [3]. Another inter-

TABLE 5
COMPARISON OF STRUCTURAL PARAMETERS OF NIOBIUM WEDGE-LIKE SANDWICHES

Parameter	$\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{OOCCMe}_{3}\right)\left(\pi-\mathrm{Pb}_{2} \mathrm{C}_{2}\right)$	$\mathrm{Cp}\left(\pi-\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \mathrm{Nb}(\mathrm{CO})\left(\pi-\mathrm{Ph}_{2} \mathrm{C}_{2}\right)$
$\nu(C \equiv C)\left(\mathrm{cm}^{-1}\right)$	1800	1780
$\mathrm{C} \equiv \mathrm{C}$ (A)	1.29	1.26
$\mathrm{Ph}-\mathrm{C}=\mathrm{C}\left({ }^{\circ}\right)$	143.5 (av.)	142 (av.)
$\mathrm{Nb}-\mathrm{C}\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)(\mathrm{R})$	2.18, 2.19	2.20, 2.24
$\mathrm{Nb}-\mathrm{X}(\mathrm{A})$	2.16 ($\mathrm{X}=\mathrm{OOCCMe}_{3}$)	2.06 ($\mathrm{X}=\mathrm{CO}$)
$\tau^{a}\left({ }^{0}\right)$	50.7	51.0
$\mathrm{Nb}-\mathrm{C}^{6}(\mathrm{~A})$	2.44	$\begin{aligned} & 2.42(\mathrm{Cp}) \\ & 2.38\left(\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \end{aligned}$

${ }^{a}$ Dihedral angle between two cyclic ligands. ${ }^{b}$ Distances to carbons of cyclic ligands.
esting feature of the solid I is an inexplicably large difference between asymmetric and symmetric OCO stretching frequencies ($\Delta \nu 347 \mathrm{~cm}^{-1}$) when compared with an analogous compound $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OOCCMe}_{3}\right)\left(\Delta \nu 110 \mathrm{~cm}^{-1}\right)$. It seems that one cannot exclude the possibility of an interaction of the Nb lone pair with vacant orbitals of the carboxylate group $C(1)$ atom at the distance of 2.61 \AA, by analogy with the $\mathrm{Nb}-\mathrm{C}(\mu-\mathrm{CO})$ interaction at a distance of $2.53 \AA$ in the aforementioned complex $\mathrm{Cp}_{2} \mathrm{Nb}(\mu-\mathrm{CO})(\sigma, \pi-\mathrm{CO}) \mathrm{Mo}(\mathrm{CO}) \mathrm{Cp}$ [8]. However, the possibility of such interactions and of their effect on OCO stretching frequencies needs further detailed consideration.

Experimental

All operations were carried out under pure argon in absolute solvents saturated with argon. $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{OCOCMe}_{3}\right)$ was prepared according to the literature method [1]. The IR spectra were recorded in KBr pellets with an UR-20 instrument (400 to $3500 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum was obtained with a PerkinElmer instrument (60 MHz), the mass spectrum with an AEI MS 30 instrument equipped with a DS-50 data processing system. The direct inlet temperature was $100^{\circ} \mathrm{C}$ and the ionisation electron energy 70 eV .

The X-ray data were collected with a Syntex P2 automatic diffractometer ($\lambda\left(\mathrm{Mo}-K_{\alpha}\right), \theta / 2 \theta$ scan). 1068 reflections with $F^{2} \geqslant 2 \sigma$ were measured for $\mathrm{Cp}_{2^{-}}$ $\mathrm{NbOOCCMe}{ }_{3}$.

The structure was solved by the heavy atom method and refined by the least squares procedure in isotropic approximation for all atoms except niobium (anisotropic) to $R 0.05, R_{\mathrm{w}} 0.06$. Crystals are orthorhombic, $a 11.383(2), b$ $9.816(2)$, c $12.708(2) \AA, Z=4, D_{c} 1.69, D_{\mathrm{m}} 1.65 \mathrm{~g} \mathrm{~cm}^{-3}$, space group Pnam. For $\mathrm{CpNb}\left(\mathrm{OOCCMe}_{3}\right)\left(\pi-\mathrm{Ph}_{2} \mathrm{C}_{2}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}, 3681$ reflections with $F^{2}>2 \sigma$ were measured. The heavy atom method was applied. The structure was refined by the least squares method in the full matrix anisotropic approximation to $R 0.065$ and $R_{\mathrm{w}} 0.053$. Crystals are triclinic, a 8.104(3), $b 10.695(3), c 16.422(4) \AA, \alpha$ $76.15(2), \beta 78.99(2), \gamma 82.71(2)^{\circ}, Z=2, D_{\mathrm{c}} 1.20, D_{\mathrm{m}} 1.19 \mathrm{~g} \mathrm{~cm}^{-3}$, space group PI.

Preparation of $\mathrm{Cp}_{2} \mathrm{NbOOCCMe}_{3}\left(\pi-\mathrm{Ph}_{2} \mathrm{C}_{2}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$
A solution of tolane ($0.49 \mathrm{~g}, 2.78 \mathrm{mmol}$) in 10 ml of benzene was added to a
brown solution of $\mathrm{Cp}_{2} \mathrm{NbOOCCMe}_{3}(0.90 \mathrm{~g}, 2.78 \mathrm{mmol})$ in 30 ml of benzene. after refluxing for $1 \mathrm{~h}, 15 \mathrm{ml}$ of heptane was added to the mixture, the solution was evaporated to half its volume under vacuum and cooled to $0^{\circ} \mathrm{C}$. Yellowgreen crystals which precipitated were separated by decantation, washed with benzene/heptane $1 / 4$ and dried under a high vacuum at $20^{\circ} \mathrm{C}$. Yield 0.66 g (47%), m.p. $196-197^{\circ} \mathrm{C}$ (dec.). (Found: C, $70.63 ; \mathrm{H}, 5.78 ; \mathrm{Nb}, 16.84 . \mathrm{C}_{32} \mathrm{H}_{32^{-}}$ NbO_{2} calcd.: $\mathrm{C}, 70.96 ; \mathrm{H}, 5.96 ; \mathrm{Nb}, 17.15 \%$.)

IR spectrum $\left(\mathrm{cm}^{-1}\right): 400 \mathrm{~m}, 427 \mathrm{w}, 565 \mathrm{~m}, 585 \mathrm{~m}, 612 \mathrm{~m}, 636 \mathrm{~s}, 695 \mathrm{~s}$, $765 \mathrm{~s}, 788 \mathrm{~m}, 813 \mathrm{~s}, 833 \mathrm{~m}, 850 \mathrm{~m}, 1012 \mathrm{w}, 1026 \mathrm{w}, 1070 \mathrm{w}, 1219 \mathrm{~s}, 1260 \mathrm{w}$, $1330 \mathrm{~s}, 1360 \mathrm{w}, 1392 \mathrm{~m}, 1443 \mathrm{~m}, 1480 \mathrm{~s}, 1578 \mathrm{~s}, 1598 \mathrm{~s}, 1618 \mathrm{~s}, 1800 \mathrm{~m}$, $2870 \mathrm{~m}, 2900 \mathrm{~m}, 2925 \mathrm{~m}, 2950 \mathrm{~m}, 3090 \mathrm{~m}$.

Acknowledgement

The authors are grateful to Dr. Yu.S. Nekrasov and D.A. Zagorevskii for recording the mass spectrum of I.

References

1 A.A. Pasynskii, Yu.V. Skripkin and V.T. Kalinnikov, J. Organometal. Chem.. 150 (1978) 51.
2 R.S.P. Coutts and P.C. Wailes, Aust. J. Chem., 20 (1967) 1579.
3 I.L. Eremenko, Cand. dissertation, Moscow, 1977.
4 R.S.P. Coutts, R.L. Martin and P.C. Wailes, Aust. J. Chem., 26 (1973) 941.
5 J.A. Labinger, J. Schwartz and J.M. Tounsend, J. Amer. Chem. Soc., 96 (1974) 4009.
6 A.N. Nesmeyanov, K.N. Anisimov, N.E. Kolobova and A.A. Pasynskii, Izv. Ahad. Nauk. SSSR, Ser. Khim., (1969) 100.
7 H.J. de Liefde Meijer and F. Jellinek, Inorg. Chim. Acta, 4 (1970) 651.
8 A.A. Pasynskii, Yu.V. Skripkin, I.L. Eremenko, V.T. Kalinnikov, G.G. Aleksandrov, V.G. Andrianov and Yu.T. Struchkov, J. Organometal. Chem., 165 (1979) 49.
9 G. Fachinetti, S. Del Nero and C. Floriani, J. Chem. Soc. Dalton Trans., (1976) 1046.
10 G. Fachinetti, S. Del Nero and C. Floriani, J. Chem. Soc., (1976) 203.
11 D.A. Lemenovskii, T.V. Baukova and V.P. Fedin, J. Organometal. Chem., 132 (1977) C14.
12 J.W. Lauher and R. Hoffmann, J. Amer. Chem. Soc., 98 (1976) 1729.
13 B.F. Fieselmann and G.D. Stacky, J. Organometal. Chem., 137 (1977) 43.
14 C.R. Lukas and M.L.H. Green, Chem. Commun., (1972) 1005.
15 A.N. Nesmeyanov, A.I. Gusev, A.A. Pasynskii, K.N. Anisimov, N.E. Kolobova and Yu.T. Struchkov, Chem. Commun., (1969) 739.
16 A.I. Gusev and Yu.T. Struchkov, Zh. Struct. Khim., 10 (1969) 515.
17 A. A. Pasynskii, Cand. dissertation, Moscow, 1969.
18 A.I. Gusev and Yu.T. Struchkov, Zh. Struct. Khim., 11 (1970) 368.
19 A.C. Blizzard and D.P. Santry, J. Amer. Chem. Soc., 90 (1968) 5749.
20 E.G. Halpern, Izv. Ahad. Nauk SSSR, Ser. Khim., (1970) 2114.

[^0]: $a_{T}=\exp \left[-1 / 40\left(B_{1} h^{2} a^{\star 2}+\ldots+2 B_{12} h h a^{\star} b^{\star}+\ldots\right)\right]$

[^1]: ${ }^{a}$ The $C p$ ligand has two orientations $C(6) \cdots C(10)$ (occupancy ~ 0.75) and $C(11) \cdots C(15)$ (occupancy ~ 0.25).
 ${ }^{b}$ The t-butyl group $C(2) \cdots C(5)$ has also the second orientation related by the mirror plane. Parameters of the anisotropic temperature factor (see Table 1) are:

[^2]: * The cyclopentadienyl ring has two orientations $C(6) \cdots C(10)$ and $C(11) \cdots C(15)$ with occupancy factors of ca. 0.75 and 0.25 respectively. These two positions are rotated with respect to each other by 26° around the ring 5 -fold axis. The t-butyl group also has two orientations related by the mirror plane and differing by rotation around the $\mathrm{C}-\mathrm{CMe}_{3}$ bond by ca. 16° and naturally having equal occupancies.

